

What happened to the Sultana?

27 April 2015 Patrick Jennings

Hartford Steam Boiler

Risk Solutions

Sultana

2

Helena Arkansas

Careening Theory

- Combination of low water and rocking of side to side
- Red Hot Iron / Water sudden steam generation
- Discussed extensively in testimony
 - JJ Witzig, Isaac West, WB Richardson and Chief Engineer Wintringer discuss careening at some point
 - Many questions at the trial about careening
- HOWEVER:
 - No one mentioned the boat careening before the explosion.
 - Gen. Hoffman in a letter to the Secretary of War

"There is nothing to show that there was any careening of the boat at the time of the disaster..."

Other Theories

- 1. Patch too thin Testimony by JJ Witzig
 - 1/4" Iron
 - JJ Witzig 100 psi max allowable
- 2. Sabotage
 - Coal torpedo
 - "Shell" found in wreckage
 - Report of a confession

Testimony

normer. nder ondilins, Al he lar How many brilers had the & ulland m

RG Taylor – Boilermaker

Hartford Steam Boiler

Ans. – "It did. So long as there is a sufficiency of water in the boiler, there is no danger of an explosion."

"It is my opinion that if the patching had been imperfectly done, and of insufficient strength to resist the ordinary pressure of the steam, the patch only would have blown off, and the injury would have stopped there."

Late 1800's Text References

Hartford Steam Boiler

STEAM-BOILER E X P L O S I O N S,

IN THEORY AND IN PRACTICE.

Rolest King R. H. THURSTON, M.A., DR. ENG'G,

DIRECTOR OF SIDLAY COLLEGE, CORPELL UNIVERSITY; OFFICIER DE L'INSTRUCTION FUBLIQUE DE FRANCE; FAST FRENDENT AN. 50C. MECH. ENG'ES; FORMERLY OF U. R. ENGINEERS; AUTHOR OF A HISTORY OF THE STRAM-ENG-GENE, A MARUAL OF THE STRAM-ENGINE, A MARUAL OF STRAM-SIDLESS, ETC., ETC., ETC.

Beell Hllustrateb.

SECOND EDITION. SECOND THOUSAND.

NEW YORK:

- Robert H. Thurston First President of ASME
- Copyright 1887

- Different irons used in boiler construction
- Copyright 1879

USEFUL THINGS TO KNOW

ABOUT

STEAM BOILERS.

COMPILED FOR

THE INFORMATION OF OWNERS, STEAM USERS, AND ENGINEERS.

G. B. N. TOWER,

SUPERVISING INSPECTOR OF THE AMERICAN STRAM HOLLER INSURANCE COMPARY; PORMERLY CHEEF RAUNTERS UNTILS JAITS MAYY; INSTRUCTOR IN NOUNCER-ING AND MECHANICS, LIADULAN SCHWITTIC DEPARTMENT, DARTNOUTH COLLEGE; AND LAITE UNTILS STATES SUPERVISING INSPECTOR OF STRAM VERSES, SECON DISTINCT,

PUBLISHED BY THE AMERICAN STEAM BOILER INSURANCE CO. OF NEW-YORK. 1885.

- General overview
- Copyright 1885

Stored Energy of Steam Boilers Thurston

 First Steam Studies – 1860's – Rankine

- Stored Energy
 - 97% in water
- Converting the stored energy (Foot lbs) to height.
- Tubular Boiler 5372 ft.
- Low Water
 - "Some authorities now question the possibility of its action at all"

TOTAL STORED ENERGY OF STEAM BOILERS .- Continued.

Type.	Stored Er	íergy in (a	vailable)	Energy per lb. of	Max. Height of Project'n.	Initial Velocity	
	Water.	Steam.	Total.	B'l'r Tot W't	B'l'r Tot	B'l'r Tot	
		Foot lbs.		-Ft.lbs-	Feet.	Feet per Second.	
r Plain Cylinder 2 Cornish 3 Two-flue Cyl'der 4 Plain Tubular 5 Locomotive 6	46,605,200 57,570,750 80,572,050 50,008,790 52,561,075 69,148,790	676,698 709,310 2,377,357 1,022,731 1,483,896 2,136,802	47,281,898 58,260,060 82,949,407 51,031,521 54,044,971 71,284,592	18913 5714 3431 1314 12243 6076 5372 2871 2786 2189 2851 2231	18913 5714 3431 1314 12243 6076 5372 2871 2786 2189 2851 2231	1103 606 471 290 888 625 588 430 423 375 428 379	

Explosion Theory – Demonstration

Sultana Boilers

- 4 Firetube
- Charcoal hammered No. 1 iron, 17/48" thick
- 46" OD, 18' long,
- 24- 5" flues
- Design 145 psig
- 2 Safety Valves
- 2 Water, 1 Steam Gage
- "Safety Guard" Fusible Plug
- In poor condition

Charcoal Hammered No. 1 (Wrought iron)

- Inclusions
- Brittle
- By 1879
 - "...not a suitable iron for boiler construction"
 - "...having but little elasticity and breaking with a sudden jerk".
 - "brittle character and unfit for use in a boiler"
- Replaced by "Flange Iron"

Mississippi River Water

- Boiler Make up straight river water
- Boilers cleaned in New Orleans and then again in Vicksburg
- 500 mg/liter (2011 USGS Data)
- ½ lb sediment per
 1000 lbs water

Scale or "Incrustation"

Hartford Steam Boiler

Fig. 73.

The whole bottom of a boiler is sometimes injured, and the plates buckled and the seams sprung, from the accumulation of mud. One case may be mentioned where the water was

Scale or "Incrustation"

Boiler Design

- 24 5″ Tubes
- Bottom cleaned by a shell broom
- Top small boys scrape them down
- 1866 3 Additional explosions of tubular boilers
- Rapid removal of tubular boilers from the Mississippi River
- Single Lap

Boiler Design

- 24 5″ Tubes
- Bottom cleaned by a shell broom
- Top small boys scrape them down
- 1866 3 Additional explosions of tubular boilers
- Rapid removal of tubular boilers from the Mississippi River
- Single Lap

Root Cause Summary

1. Quality of iron

- Brittle Especially when overheated
- 2. Mississippi River
 - Mud
- 3. Design
 - Not suited for conditions hard to clean
 - Tubular boilers removed from Mississippi River Steamboats

"Dangerous Conditions"

Yearly Summary of Inspections for the Year 1879.

Whole number of visits during the	e year,		2	-	-		17,179
Whole number of inspections, -		5.0	e 1				36,169
Whole number of thorough annual	inspect	tions,	-	340		2	13,045
Whole number of boilers subjected	to hyd	raulic te	est, mos	tly new	or repa	ired,	2,540
Whole number of defects disco	vered,	16,238.	Dange	erous de	efects, 3	.816.	

Details for the year 1879.

,	In all.	Dan- gerous.		In all.	Dan- gerous.
Furnaces out of shape,	848	195	Cases of internal grooving -	126	56
Fractures in all,	1,387	684	Water gauges out of order	405	133
Burned plates,	963	302	Blow-out ap'atus out of order.	181	61
Blistered plates,	2,597	334	Safety-valve overloaded.	234	102
Cases of deposit of sediment,	2,177	456	Pressure gauges out of order.	1.393	298
Cases of incrustation & scale,	2,791	388	Boilers without gauges.	714	8
Cases of external corrosion,	1,162	352	Cases of deficiency of water	55	38
Cases of internal corrosion, -	743	188	Broken braces and stays	462	221

- Burnt Plates
- Incomplete repair
- Data from England indicated that 50% of explosions in one year initiated at a seam.
- Locomotive Data 3816
 Dangerous Conditions
- 1% Deficiency of water
- 16% Burned / blistered
- 22% Sediment / scale

Explosions Year Ending Oct. 1, 1868

	Number	Number	Number
D D T H	Exploded.	killed.	wounded.
R. R. Locomotives,	23	25	36
Steam Saw Mills,	13	40	42
Steam Boats,	10	100	50
Iron and metal Works, .	- 10	31	45
Wood-working Shops, -	6	1	10
Steam Tugs and Propellers,	8	28	12
Mills of various kinds, -	9	5	22
Distilleries and Breweries,	3	4	13
Rendering Houses,	2	1	4
Domestic Boilers for heating,	2	3	1
Dock Engines, -	- 3	5	6
Steam Fire Engines, -	2	5	16
Cotton Press,	1	2	, 1
Miscellaneous, ·	- 2	1	3
Total,	94	246	261

Polytechnic Club – 1857

- HSB incorporated in 1866
- First Meeting of ASME 1880
- Hartford Standards 1889
- ASME First Boiler & Pressure Vessel Code 1915
- National Board First meeting of Chief Inspectors -1919

Thank you very much for your attention

Pat Jennings

Hartford Steam Boiler

Risk Solutions