### "What's under YOUR hood?"

Balancing cost against risk when sourcing pressure equipment

Presented by: Mark H. Masters, P.E. Director Code Services – Latin America



## Context

- Use of the ASME BPV Code and NBIC in Latin America
  - Spec'd absent formal certification (<10% of equip't built to ASME is actually certified)</li>
  - Little to no control over repairs/alterations (role of the National Board and NBIC not understood)
  - What drives the use of the Codes? (regulatory climate)
  - Who builds/repairs equipment?
  - How is compliance verified?
- Issues
  - Perception of NBIC and ASME Code usefulness
  - Impact on public safety and property



## Bentley GT Convertible



# **Modified Chrysler Sebring**





# What's the difference?

### Sebring Bentley Conversion

- 2.7L Chrysler V-6
- 189 hp @ 6400RPM
- Fully-functional lighting
- Original Bentley badges
- Genuine exhaust tips
- \$3000 wheel/tire pkg.
  \$20,000 price (used)

### **Bentley Continental GTC**

- 4L twin turbo V-8
- 520 hp @ 6000RPM
- Sports suspension w/continuous damping control
- 4-wheel ventilated ABS w/electronic distribution/assist and pop-up roll bars
- \$64,000 (used)



## What you see may not be what you get

- In Chrysler/Bentley example, low risk.
  - Easy to see what's different.
  - The Chrysler *can't* be operated like the Bentley, so the main risk is paying too much for what's, essentially, a Chrysler.
- Extending the concept to pressure equipment;
  - Very difficult to determine quality from an external view of the constructed vessel/boiler.
  - Inferior equipment can easily be placed into service for which its not suitable.
  - Risk is that the equipment fails prematurely, and possibly catastrophically.



## Cost is Key

- Nothing wrong with saving money, that's important.
- If you're being promised equipment that's the same as "certified," but at significant savings, you need to take a closer look "under the hood!!!"
- Understanding the methods manufacturers use to cut costs is critical.
  - Actions can be taken to determine in advance which substitutions/sacrifices are acceptable.
- We'll explore methods commonly used by manufacturers to reduce cost and present some real-world examples of risks and mitigation...



### Ways for a Manufacturer to Cut Costs

| Bypass expensive Code or spec rqmt's                                       | Consequences                                                                                                      |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Use less expensive materials.                                              | Premature failure (owing to corrosion, cracking<br>and other failure modes for pressure equipment<br>in service). |
| Reduce in-process inspections (by mfr).                                    | Production takes short cuts, failing to meet quality program.                                                     |
| Don't use qualified welders/procedures and/or misapply procedures/welders. | Welding defects (often not visible through other than volumetric examination/NDE).                                |
| Fail to properly control filler materials.                                 | Compromised properties of final weld.                                                                             |
| Misapply NDE (methods, extent, personnel qualifications).                  | Unidentified defects, particularly subsurface.                                                                    |
| DO outsource critical activities (heat treatment, forming, welding).       | Reduces control/verification of critical activities.                                                              |
| Reduce calibration frequency.                                              | May lead to erroneous test results (particularly for pressure tests).                                             |
| Don't keep sufficient records                                              | Complicates asset repair/maintenance/sale.                                                                        |
| Don't use qualified third-party inspectors                                 | Reduces inspection effectiveness/impartiality.                                                                    |
| Resulting Quality = Less than expected                                     |                                                                                                                   |

# Reality – Deficiencies Happen

- Distribution of findings from Certificate Holder audits
- QC Program implementation demonstration (QC Program content findings are common too, but not represented here)
- Certificate Holder is given several months to prepare
- Highly-trained auditor.
- Scope is limited to what can be found in 1.5 days.

#### **Findings Distribution**





# Real-World Examples – Materials

Boiler manufacturer substitutes welded pipe for seamless pipe required by construction code. Mfr's inspectors pressured by production to accept substitution.

Risk

- Failure in service (lost production and/or damage to persons/property)
- Possible solutions
  - Buyer and/or third-party inspection by qualified inspectors.
  - Insist on full compliance with code of construction (including inspection requirements, if any).
  - Identify critical parts up front and ensure inspection and/or certification.



# Real-World Examples – Materials/Parts

- Manufacturer convinces buyer to remove engineering requirement for certified welded parts. Welded heads received, but not certified.
- Risk
  - Welding deficiencies (were qualified procedures/personnel used?)
  - Was heat treatment required/performed?
  - How was forming performed/controlled?
  - What inspections were performed and by whom?
- Possible solutions
  - Insist on full compliance with spec.
  - Identify critical parts up front and ensure inspection and/or certification.



# **Real-World Examples - Welding**

### • Weld Inspection

- Inspector rejects properly-qualified WPQ's (requests that welders be qualified for each welded joint vs. accepting qualified ranges)
- Inspectors accept PQR's (while properly qualified, thickness to be welded falls outside qualified thickness range)
- Risk
  - Production delays as buyer's engineering group evaluates
  - Mfr. looks for other ways to recover cost of unnecessary extra work
- Possible solutions
  - Buyer specifies qualification requirements for weld inspector.
  - Buyer insists on demonstration of inspectors' proficiency (specific to welding standard(s) used).
  - Leverage welding qualifications mandated by applicable std's.



# Real-World Examples – NCR's

- Non-conformities
  - Inspector arbitrarily rejects construction, mfr. disagrees.
  - Production halted while determination is made as to who can authorize mfr. to proceed (or not).
  - On hold as Buyer's engineering department evaluates.
- Risk
  - Delayed delivery, pressure to justify accepting deficiencies, poor quality and/or cost overruns.
- Possible solutions
  - Clearly specify acceptance criteria (leverage codes)
  - Define methods for resolving conflicts, up front.
  - Insist on mfr demonstration of NCR handling (an absence of NCR's should be a warning sign!!!)



### **How to Protect Yourself**

| Action                                                             | Example                                                                                                                                                  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Define mandatory requirements up                                   | Certified parts/materials                                                                                                                                |
| front                                                              | Acceptance Criteria                                                                                                                                      |
| Demand that mfr identify the source                                | Material/personnel substitutions                                                                                                                         |
| of cost savings                                                    | Outsourcing                                                                                                                                              |
| Help mfr reduce cost w/o sacrificing quality                       | Leverage best practices (monitoring,<br>procedure/personnel reviews, etc.)<br>Risk-based sampling vs. 100% inspection<br>Eliminate redundant inspections |
| Verify mfr's activities                                            | Second or Third-party Inspection<br>Based on risk associated with activity                                                                               |
| Match qualification of the inspector(s) to the activities verified | Accreditation to the standard/spec used.<br>Demonstration of proficiency/experience                                                                      |
| Push conformity assessment tasks to experts                        | Resolution of NCR's<br>Establishing inspection points<br>Coordination of inspection visits                                                               |

#### **Reduced Cost while Maintaining Quality**

# Summary

- Cost controls should be considered carefully in the context of final quality (compliance to spec./standard).
- Mfr should be asked to explain what's generating significant savings
  - Quantify
  - Demonstrate equivalency for substitutions of material, services or personnel.
- Participate to ensure cost measures are acceptable
- Verification by the buyer or qualified third-parties is key for critical processes/equipment
- <u>The results you get are only as good as the effectiveness</u> of your look under "the hood"!!!



## Take Aways

- Buyers are key to changing the current approach to use of the ASME BPV Code and NBIC.
- NBIC, in particular, can be leveraged to demonstrate added value of certification
  - Economic climate drives repair vs. replacement.
  - Construction Code is generally known, so NBIC rules can be followed to certify repairs/alterations.
  - Increases population of certified repair firms (and/or mfr's) and provides an incentive for them to meet the Codes.
- Demonstration of value (and cost reduction) should feed increased market insistence on ASME and NBIC certification.



